Learn from history and feed recommendations into synthesis and governance by implementing the Temporal Database subsystem (VectorStore + PatternOracle + MetricIndexer). This plan operationalizes institutional memory as deterministic, queryable artifacts.
| ADR ID | Decision Title | Impact on This Plan |
|---|---|---|
| ADR-030 | VibesPro™ Foundation Integration | Temporal AI is adopted as the foundational pattern oracle implementation. |
| ADR-029 | Observability Stack Architecture | MetricIndexer ingests operational telemetry for pattern weighting. |
| PRD ID | Requirement Title | Satisfied By (SDS) | Acceptance Criteria |
|---|---|---|---|
| PRD-020 | VibesPro™ Foundation Platform Requirements | SDS-045, SDS-015 | US-001..US-002 (pattern query + learning) |
| SDS ID | Service/Component | Bounded Context | SEA-DSL Spec File | Implementation Status |
|---|---|---|---|---|
| SDS-015 | Temporal Database Service | semantic-core |
N/A | Designed |
| SDS-045 | VibesPro™ Foundation Integration | shared |
N/A | Proposed |
graph TD
ADR30[ADR-030: VibesPro™ Foundation] --> PRD20[PRD-020: VibesPro™ Foundation Platform]
PRD20 --> SDS15[SDS-015: Temporal Database Service]
PRD20 --> SDS45[SDS-045: Foundation Integration]
ADR29[ADR-029: Observability] --> SDS15
LocalFirstPrivacy).Updated 2025-12-30: Added specific dependencies from gap analysis section 1.3 (Temporal Database / Semantic Memory).
| Dependency | Type | Version | Package | Justification | ADR/SDS Reference |
|---|---|---|---|---|---|
| pgvector | PostgreSQL Extension | 0.8.x |
pgvector |
PostgreSQL-native vector storage with ACID guarantees, hybrid queries, and simpler ops than dedicated vector DBs. Sufficient for SEA™’s scale (<1M vectors). | SDS-015 |
| timescaledb | PostgreSQL Extension | 2.17.x |
timescaledb |
Track metric evolution and pattern detection with native PostgreSQL integration. | SDS-015 |
| llama.cpp | Runtime | latest |
llama-cpp-python, llama.cpp CLI |
Run EmbeddingGemma locally for deterministic embeddings. | SDS-015 |
| EmbeddingGemma | Model | 300M 4-bit GGUF | EmbeddingGemma-300M-Q4_K_M.gguf |
Local-first, deterministic embeddings. 300M params + 4-bit quantization = fast inference (<100ms) with low resource usage. Fine-tunable on SEA-DSL corpus. | SDS-015 |
1
2
3
4
5
6
7
8
9
10
11
12
# PostgreSQL extensions (in Docker or migration)
CREATE EXTENSION IF NOT EXISTS vector;
CREATE EXTENSION IF NOT EXISTS timescaledb;
# Python dependencies
pip install pgvector psycopg[binary] llama-cpp-python
# llama.cpp CLI (via mise)
mise use llama-cpp@latest
# Download embedding model
wget -P models/ https://huggingface.co/google/EmbeddingGemma-7B-GGUF/resolve/main/EmbeddingGemma-300M-Q4_K_M.gguf
1
2
3
4
5
6
// Semantic Memory Port (wraps pgvector + llama.cpp)
interface SemanticMemoryPort {
storeObservation(content: string, metadata: Metadata): Promise<VectorId>;
findSimilar(query: string, limit: number): Promise<ScoredObservation[]>;
generateEmbedding(text: string): Promise<Float32Array>;
}
1
2
3
4
/
├── docs/specs/semantic-core/sds/015-temporal-database-service.md
├── docs/specs/shared/prd/020-vibespro-foundation-platform.md
└── docs/specs/shared/sds/045-vibespro-foundation-integration.md
| Cycle | Branch | Wave | Files Modified | Files Created | Specs Implemented |
|---|---|---|---|---|---|
| C1A | cycle/p010-c1a-temporal-api-contract |
1 | docs/specs/semantic-core/sds/015-temporal-database-service.md |
— | Entities/resources/flows/policies |
| C1B | cycle/p010-c1b-governance-signals |
1 | docs/specs/shared/adr/029-observability-stack-architecture.md (if needed) |
— | Telemetry ingestion expectations |
| C2A | cycle/p010-c2a-integration-hooks |
2 | docs/specs/shared/sds/045-vibespro-foundation-integration.md |
— | RecommendPatterns + embedding hooks |
docs/specs/semantic-core/sds/015-temporal-database-service.mddocs/specs/shared/adr/029-observability-stack-architecture.md, docs/specs/shared/sds/030-semantic-observability.mddocs/specs/shared/sds/045-vibespro-foundation-integration.md| Risk | Likelihood | Impact | Mitigation Strategy |
|---|---|---|---|
| Privacy leakage via embeddings | Medium | High | Enforce local-first; scrub PII before embedding; store only derived features when needed. |
| Recommendation instability | Medium | Medium | Deterministic ranking inputs; version model + scoring weights; record provenance of recommendations. |
| Type | ID/Doc | Document |
|---|---|---|
| PRD | PRD-020 | docs/specs/shared/prd/020-vibespro-foundation-platform.md |
| SDS | SDS-015 | docs/specs/semantic-core/sds/015-temporal-database-service.md |
| SDS | SDS-045 | docs/specs/shared/sds/045-vibespro-foundation-integration.md |